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Abstract: Automatic data summarization is part of machine learning and text mining, in which source text is condensed 

into a shorter version preserving its information content and overall meaning. First developed as a labour-intensive 

manual discipline in the 1980s, text mining has become ever more efficient as computing power has increased. In-A-

Nutshell is an attempt to create a robust automated text summarization system, based on sentence scoring. 
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I. INTRODUCTION 
 

A. The Concept 
 

Text summarization is the process of searching through 
countless pages of plain-language digitized text to find 

useful information that‘s been hiding in plain sight. It is 

more about finding unseen connections and patterns in 

plain-language narratives.  
 

Several existing systems, including some Web browsers, 
claim to perform summarization. However, an analysis of 

their output shows that their summaries are simply 

portions of the text, produced verbatim. While there is 

nothing wrong with such extracts, the word ‗summary‘ 

usually connotes something more, involving the fusion of 

various ‗concepts of the text‘ into a ‗smaller number of 

concepts‘. Many methods have emerged over time for 

generation of summaries.  
 

An extractive method consists of selecting important 

sentences, paragraphs etc. from the original document and 

concatenating them into shorter form. The importance of 

sentences is decided based on statistical and linguistic 

features of sentences.  
 

An abstractive method consists of understanding the 

original text and re-telling it in fewer words. Abstractive 

methods build an internal semantic representation and then 

use natural language generation techniques to create a 

summary that is closer to what humans might generate. 
 

In addition to extracts and abstracts, summaries may differ 

in several other ways. Some of the major types of 

summary that have been identified include indicative 

(keywords indicating topics) vs. informative (content 

laden); generic (author‘s perspective) vs. query-oriented 

(user-specific); background vs. just-the-news; single 
document vs. multi-document; neutral vs. evaluative.  

 

This process can be used in many applications such as 

information retrieval, intelligence gathering, information 

extraction, text mining, and indexing [5][7][14]. The texts 
that are mined could be newspaper or website articles, 

research papers, blog entries, patent applications; 
 

A summary should meet two conditions: maintain a wide 

coverage of the document topics and keep low redundancy 
at the same time [7][14].  A good generic summary should 

contain the major topics of the document and minimize  

 

 
redundancy. A full understanding of the major dimensions 

of variation, and the types of reasoning required to 

produce each of them, is still a matter of investigation. 

This makes the study of automated text summarization an 

exciting area to work in. 
 

B.  Overview of In-A-Nutshell 
 

As the problem of information overload has grown with a 

large volume of text documents, presenting the user with a 

summary of each document greatly facilitates the task of 

allowing the user to read less data but still receive the most 

important information. 
 

In-A-Nutshell is a java web application that allows users 

to upload files of the type .doc, .docx, .txt, .pdf containing 

arbitrary English input text and provides both extracted 

summary as well as abstracted summary after processing 

the input.  
 

Our application is a score based summarization technique 

which considers various factors for scoring a sentence like 

similarity of words, position relevancy, named entity 

recognition and cue phrases, along with some parts of 

Natural Language Processing (NLP).  
 

The main objective of In-A-Nutshell is to: 
 

1. Reduce the human effort and time required for the 
generation of summary 

2. Allow users to obtain a quick overview of a given 

document  
 

 Any summary must consists of all the necessary details of 
the parent document and the length of summary must be 

less than the original document. In the previous 

methodology used for this particular task, it was felt that 

few of the important sentences were excluded from the 

summary due to the fact that their frequency does not 

satisfy the threshold value of sentence score because of 

usage of different phrases used to represent the same fact. 

The proposed technique will remove this problem up to a 

certain extent by considering the semantic similarity 

between sentences.  
 

In-A-Nutshell makes use of following JAVA libraries: 

Apache Lucene Core - Apache Lucene is a high-

performance, full-featured text search engine library 
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written entirely in Java. It is a technology suitable for 

nearly any application that requires full-text search, 

especially cross-platform. It has been used here for the 

elimination of stop words, which is a part of our 
application‘s pre-processing module. 
 

Apache OpenNLP - The Apache OpenNLP library is a 

machine learning based toolkit for the processing of 

natural language text. It supports the most common NLP 
tasks, such as tokenization, sentence detection, part-of-

speech tagging, named entity extraction, chunking, 

parsing, and co-reference resolution. These tasks are 

usually required to build more advanced text processing 

services.  

 

II. THE NEED OF AUTOMATIC SUMMARIZER 
 

Businesses use data and text mining to analyse customer 

and competitor data to improve competitiveness; the 

pharmaceutical industry mines patents and research 

articles to improve drug discovery; within academic 

research, mining and analytics of large datasets are 

delivering efficiencies and new knowledge in areas as 

diverse as biological science, particle physics and media 

and communications. Economic, academic and social 

activities generate ever increasing quantities of data.  
 

Businesses collect trillions of bytes of information on 

customer transactions, suppliers, internal operations and 

indeed competitors; the global research community 

generates over 1.5 million new scholarly articles per 
annum; and social networking sites such as Facebook and 

twitter enable users to share over 1.3 billion pieces of 

information/content per day. According to the McKinsey 

Global Institute's (MGI) 'Big Data' report 6, the generation 

of information and data has become a 'torrent', pouring 

into all sectors of the global economy and is predicted to 

increase at a rate of 40% annually. (Mar 14, 2012). 
 

Exploitation of this vast data and information resource can 

generate significant economic benefits, says the report, 

including enhancements in productivity and 

competitiveness, as well as generating additional value for 

consumers. 

 

III. STRUCTURE OF IN-A-NUTSHELL 
 

The design of this application is based on the following 

modules: 
 

A. User Interface 

B. Pre-processor 

C. Sentence connectivity calculator 

D. Sentence Scorer 

E. Extractor 

F. Abstractor 
 

Each module employs several different, complementary, 

methods. 
 

A. User Interface 

The user interface of our application is divided into two 
sections, one for accepting input and the other for 

displaying the results.  
 

Input section consists of: 

1) Upload button for allowing user to upload a file. 

2) List of file types supported for upload. 

3) Summarize button to provide the user with extracted as 

well as abstracted summary. 
4) Statistics button to provide the user with additional 

information such as number of words in original text, 

number of words in summary, time taken for the 

application to generate summary and time taken to 

generate same summary manually. 
 

 
Fig. 1 Overall Methodology of In-A-Nutshell Document 

Summarizer 
 

B. Pre-processor 

The foundation of a summary is its sentences. Before 

generating these sentences, it is necessary to select the 

correct sentences from input document and place them in a 

desired format, by following a set of pre-processing steps, 

namely, sentence detection, tokenization, stop words 

removal and word stemming.  
 

1) Sentence Detection: 

This step deals with classification of document into 

sentences. While doing this, the fact that only a full-stop 
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does not indicate end of sentence is also considered. The 

method used for detection of sentences is ―the longest 

white space trimmed character sequence between two 

punctuation marks.‖ 
 

2) Sentence Tokenization: 

This step deals with dividing the sentences into collection 

of unique tokens. This is done since text processing 

components like part-of-speech taggers, parsers, stemmers 

and so on, work with tokenized text. 
 

3) Stop Word Removal: 

Sometimes, some extremely common words which do not 

contribute to help select sentences which are to be kept in 

summary and are of little value are excluded from the 

document entirely. These words are called stop words. 

Some of the common English stop words include ‗a‘, 

‗the‘, ‗is‘, ‗from‘, ‗he‘, ‗will‘ etc. The general strategy for 

determining a stop list is to sort the terms by collection 

frequency (the total number of times each term appears in 

the document), and then to take the most frequent terms. 
 

4) Word Stemming: 
Stemming in linguistics refers to the process of obtaining 

root form of a word. The goal of stemming is to reduce 

inflectional forms and sometimes derivationally related 

forms of a word to a common base form. For instance:  

am, are, is be  

car, cars, car's, cars' car  
 

Stemming is done in order to ensure that two words, which 

have the same root word, get the same score in the 

Sentence Scorer module. 
 

C. Sentence connectivity calculator 

In this module, the similarity (interconnectivity) of each 

sentence with every other sentence of the document is 
computed. This is known as Sentence-to-Sentence 

Cohesion. 
 

Interconnectivity function: 

This function receives two sentences, and returns a score 

for the intersection between them. We just split each 
sentence into words/tokens, count how many common 

tokens we have, and then we normalize the result with the 

average length of the two sentences. 

f (s1, s2) = |{w | w in s1 and w in s2}| / ((|s1| + |s2|) / 2) 
 

In the first step we split the text into sentences, and store 

the intersection value between each two sentences in a 

matrix (two-dimensional array). So values[0][2] will hold 

the intersection score between sentence #1 and sentence 

#3. In the second step we calculate an individual score for 

each sentence and store it in a key-value dictionary, where 

the sentence itself is the key and the value is the total 

score. We do that just by summing up all its intersections 

with the other sentences in the text (not including itself). 
 

D. Sentence Scorer 

In this module, features influencing the relevance of 

sentences are decided and then scores are assigned to these 

features. Final score of each sentence is determined by 

adding scores from each feature. Top ranked sentences are 

selected for final summary. 

The scoring mechanism of In-A-Nutshell awards certain 

points to a pre-processed sentence based on following 

features: 
 

1) Position-of-sentence feature: 

This method exploits the fact that in some genres, certain 
sentence positions tend to carry more topic material than 

others [5][7]. Optimal Position Policy (OPP) is defined as 

a list that indicates in what ordinal positions in the text, 

high-topic bearing sentences occur. This work, described 

in [22], is the first systematic study and evaluation of the 

Position method reported.   
 

For the Ziff-Davis corpus (13,000 newspaper articles 

announcing computer products) research has found that 

the OPP is [T1, P2S1, P3S1, P4S1, P1S1, P2S2, {P3S2, 

P4S2, P5S1, P1S2}, P6S1,…] i.e., the title (T1) is the most 

likely to bear topics, followed by the first sentence of 

paragraph 2, the first sentence of paragraph 3, etc. In 

contrast, for the Wall Street Journal the OPP is [T1, P1S1, 

P1S2, ...] 
 

Generalizing this approach to all topics, it is found that 

sentences occurring in initial and final position of entire 
document(i.e. the first and last sentence) as well as first 

sentence of individual paragraphs have a higher 

probability of being relevant, and hence they obtain a 

higher score.  
 

2) Sentence Length Cut-O Feature: 

Sentences containing less than a pre-specified number of 

words are not included in the summary 
 

3) Upper-case word feature: 

Sentences containing acronyms are given a higher score.  
  

4) Font based feature: 

Sentences containing words appearing in upper case, bold, 

italics or underlined fonts are usually more important, and 

hence are given higher score. 
 

5) Sentence Connectivity Score 

This feature calculates total connectivity score of a 

sentence, which is the sum of the relative connectivity 

scores, obtained from Sentence Connectivity Calculator, 

mentioned above. 
 

6) Named Entity feature: 

Sentences that contain Proper nouns, Names of people, 

Places and Dates are considered as important and are 
given a higher score. 
 

7) Sentence with figures feature: 

Writing a scholarly manuscript often requires the use of 

numbers to express important information, particularly in 

the science field. Also, news articles and articles related to 

stock market are full of numbers. Our application 

considers figures as an important parameter to score the 

sentences. 
 

8) Title word feature: 

If the user input document comes with an already available 

title, then the sentences in the document which contain 

words that appear in the title are also indicative of the 

theme of the document. These sentences have higher 

chances of inclusion in summary. 
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9) Cue-Phrase feature: 

Phrases such as ‗in summary‘, ‗in conclusion‘, and 

superlatives such as ‗the best‘, ‗the most important‘ can be 

good indicators of important content in a document 
[6][21]. Cue phrases are generally genre dependent.  
 

For example, ‗rise‘ and ‗theses‘ would be present in 

documents related to stock market and scientific literature 

respectively. After careful research on a number of 

documents of various genres, we have successfully 

developed a list of 510 generalised cue phrases applicable 

to any document of any genre. Our application uses this 

research as a foundation for scoring of sentences, which 

includes cue phrases like ‗this paper‘, ‗this article‘, ‗the 

fact‘, ‗outline‘, ‗proof‘ to name a few. 
 

In-A-Nutshell divides the cue phrases into three categories 

based on their importance. 
 

Category 1: It includes cue phrases that are best indicators 

of important content which simply must appear in the 

summary. Sentences containing cue phrases from this 

category are given the highest score. Examples include ‗as 

a result‘, ‗defined‘, ‗important‘ etc. 
 

Category 2: It includes cue phrases whose roles differ 

according to context i.e. cue phrases that appear to be very 

important in one context but not so important in another 

context. Sentences containing cue phrases from this 

category are given a medium score. Examples include 

‗recently‘, ‗although‘, ‗classify‘ etc. 
 

Category 3: It includes cue phrases that might give a slight 

clue about the overall topic of any user document. 

Sentences containing cue phrases from this category are 

given the least score. Examples include ‗likewise‘, ‗relate‘ 
etc. 
 

Our application also considers the position dependency of 

a cue phrase and scores it accordingly. For example, the 

sentence ―Starters would be served first‖ is not in the same 

importance class as ―The first person to go on moon was 

Neil Armstrong‖ 
 

For more accuracy, our application assumes that a 

sentence containing many cue phrases from category 3 are 

of the same importance as that of a sentence containing 

only one cue phrase of category 2, and hence they are 

scored equally. This is the NP-IP condition (i.e. the 
number of cue phrases in a sentence as well as their 

importance is considered) 
 

10) Quoted text feature: 

The sentences having quotes are also given higher score. If 

an entire sentence is in quotes and it contains words such 

as ‗I‘, ‗you‘, ‗we‘ etc, our application regards this as a 

conversation sentence and does not give a higher score to 

it. 
 

11)   Question based feature: 

If a sentence is interrogative, then this sentence and its 

next one are given a high score. This is based on the fact 

that the next sentence of an interrogative sentence might 

contain answer to the question asked in previous sentence. 

For example, ―What is a database? A database is a 

collection of information that is organized so that it can 

easily be accessed, managed, and updated.‖ However, 

rhetorical questions are not given any weightage. 
 

12)   First-sentence overlap feature: 

As discussed earlier, the first sentence of the document has 
a higher probability of being relevant for the summary. 

This feature checks how much similar (closer in meaning) 

is each sentence to the first sentence. 
 

E. Extractor 

The scored sentences are given to the Extractor module.  

This module picks out the sentences in descending order 

of their scores. The user is given the choice of selecting 

what percent of summary he/she wants (the default being 

40%) 
 

F. Abstractor 

In-A-Nutshell uses Markov chains to generate new 

sentences from existing ones. 
 

There are many real-world scenarios where it's useful for a 

program to create new sentences. For example, Google 

Translate analyzes a sentence in a foreign language, and 

generates a new sentence in English with the same 

meaning. Siri listens to questions, and generates new 

sentences that answer those questions. When programs 

generate sentences, they usually follow a simple trick. 
First, they analyze lots of existing sentences that are 

similar to what they want to generate, and record which 

words and phrases occur frequently. Then, they randomly 

choose phrases that occur, and rearrange them in a way 

that makes sense. Markov chains are the simplest way to 

generate sentences that almost make sense, but really 

don‘t. They are based on figuring out the likelihood of a 

word following another word by looking at existing bodies 

of text (for example, Wikipedia). 
 

Then, to generate sentences you choose a starting word 

and based on a random variable as well as the probabilities 

that you‘ve found by looking at existing text, you choose a 

word following that starting word and repeat.  
 

In the 1948 landmark paper ‗A Mathematical Theory of 

Communication‘, Claude Shannon founded the field of 

information theory and revolutionized the 

telecommunications industry, laying the groundwork for 

today's Information Age. In this paper, Shannon proposed 

using a Markov chain to create a statistical model of the 

sequences of letters in a piece of English text. Markov 

chains are now widely used in speech recognition, 

handwriting recognition, information retrieval, data 
compression, and spam filtering. 
 

The basic steps of creating Markov chains are: 
 

1. Select a random starting word to start a new sentence. 

2. From all the words that ever follow that word in the 

input sequence, choose one. Add that word to the end of 

our new sentence. 

3. Continue selecting randomly from the words that can 

possibly follow the current last word of our sentence 

until either there are no possible choices or we have 

made a sentence as long as desired. 
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Fig. 2 A graphical representation of the Markov 

possibilities for ―Hello, how are you?‖ and ―Where are my 

keys?‖ 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

E.g. consider two sentences ―Hello, how are you‖ and 

―where are my keys‖. If we convert these sentences into a 

graph showing the possible results, we would get Figure 2 
 

In this graph, each arrow represents a choice we can take 

based on the last word we added to our sentence, 

continuing until there are no valid paths to take. Looking 

at the graph, there are four possible outputs if we start our 
chain with either ―Hello,‖ or ―Where‖: 
 

• Hello, how are you? 
 

• Hello, how are my keys? 
 

• Where are you? 
 

• Where are my keys? 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

IV.RESULTS 
 

 
Fig 3. Original document 

 

 
Fig 4. Summary 
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V. CONCLUSION AND FUTURE SCOPE 
 

In this paper a single document sentence scoring based 

text summarization algorithm is introduced. The result 

shown by this technique is found to be more efficient than 

the previously used technique which considers the 

frequency of text only. Semantic similarity is also used in 

this algorithm. The proposed algorithm is implemented 

using java platform and is verified over the standard text 
mining corpus. The discovered results are interesting and 

gist of the summarized document is also preserved. The 

future direction for the proposed work is to apply the 

similar concept in multi-document summarization. We are 

also looking forward to extending our system to facilitate 

search engine optimization (selection of precise and 

relevant web pages or documents) based on a user query. 
 

Automated summarization is an old topic (work on it dates 

from the 1950‘s) and a new topic as well. It is so difficult 

that an interesting headway can be made for many years to 

come. We are excited about the possibilities offered by the 

combination of semantic and statistical techniques in what 

is, quite possibly, the most complex task of all NLP. 
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